Em 1937 o grande neurocientista sir Charles Scott Sherrington da University of Oxford, expôs o que viria a se tornar uma descrição clássica do cérebro em funcionamento. Ele imaginou pontos de luz sinalizando a atividade das células nervosas e suas conexões. Segundo ele, durante o sono profundo somente umas poucas partes remotas do cérebro brilhariam, dando ao órgão a aparência de um céu de noite estrelada. Mas ao despertar, “é como se a Via Láctea iniciasse uma verdadeira dança cósmica”, ele pondera. “Rapidamente a massa encefálica se transforma num tear encantado, onde milhões de agulhas cintilantes tecem um padrão dissolúvel –, mas nunca durável; uma verdadeira harmonia de padrões secundários alternantes.”
Embora Sherrington certamente não tenha percebido à época, sua metáfora poética abrigava um conceito científico importante, ou seja, revelava o funcionamento interno do cérebro através da óptica. A compreensão do modo como os neurônios cooperam para elaborar pensamentos e comportamentos permanece um dos problemas sem solução mais complicados da biologia no sentido amplo, principalmente porque os cientistas em geral não podem ver os circuitos neurais em ação.
Como os computadores, o sistema nervoso funciona a eletricidade; os neurônios codificam informações em sinais elétricos, ou em potenciais de ação. Esses impulsos, com tensões menores que um décimo de uma pilha AA, induzem uma célula nervosa a liberar moléculas neurotransmissoras que então ativam ou inibem células conectadas num circuito.
Todas as células de uma pessoa contêm os mesmos genes, e o que distingue duas células entre si são as diferentes combinações de genes, ativados e desativados, em cada uma delas.
Recentemente pesquisadores listaram outras proteínas fotossensíveis, como a melanopsina, encontradas em células especializadas da retina que ajudam a sincronizar o ciclo circadiano com a rotação da Terra, como sendo acionadores. E o esforço conjunto de Georg Nagel do Instituto Max Planck de Biofísica em Frankfurt, Karl Deisseroth da Stanford University e Stefan Herlitze da Case Western Reserve University demonstraram que outra proteína, chamada canal-rodopsina 2 – que orienta os movimentos das algas – está apta a esta função. Há também uma variedade de acionadores codificados geneticamente que podem ser controlados via substâncias fotossensíveis sintetizadas por nós e por Isacoff e seus colegas da U. C. Berkeley, Richard H. Kramer e Dirk Trauner.
Descobrimos um interruptor genético que está sempre ativo nos dois neurônios de comando, e em nenhum outro – e um outro interruptor que fica ativo em neurônios do padrão gerador, mas não nos neurônios de comando. Foi como transmitir uma mensagem pelo rádio para uma cidade com 150 mil residências, sendo que um número reduzido delas possuía o sintonizador necessário para decodificar o sinal, que ficou inaudível para as restantes.
www2.uol.com.br
Embora Sherrington certamente não tenha percebido à época, sua metáfora poética abrigava um conceito científico importante, ou seja, revelava o funcionamento interno do cérebro através da óptica. A compreensão do modo como os neurônios cooperam para elaborar pensamentos e comportamentos permanece um dos problemas sem solução mais complicados da biologia no sentido amplo, principalmente porque os cientistas em geral não podem ver os circuitos neurais em ação.
Como os computadores, o sistema nervoso funciona a eletricidade; os neurônios codificam informações em sinais elétricos, ou em potenciais de ação. Esses impulsos, com tensões menores que um décimo de uma pilha AA, induzem uma célula nervosa a liberar moléculas neurotransmissoras que então ativam ou inibem células conectadas num circuito.
Todas as células de uma pessoa contêm os mesmos genes, e o que distingue duas células entre si são as diferentes combinações de genes, ativados e desativados, em cada uma delas.
Recentemente pesquisadores listaram outras proteínas fotossensíveis, como a melanopsina, encontradas em células especializadas da retina que ajudam a sincronizar o ciclo circadiano com a rotação da Terra, como sendo acionadores. E o esforço conjunto de Georg Nagel do Instituto Max Planck de Biofísica em Frankfurt, Karl Deisseroth da Stanford University e Stefan Herlitze da Case Western Reserve University demonstraram que outra proteína, chamada canal-rodopsina 2 – que orienta os movimentos das algas – está apta a esta função. Há também uma variedade de acionadores codificados geneticamente que podem ser controlados via substâncias fotossensíveis sintetizadas por nós e por Isacoff e seus colegas da U. C. Berkeley, Richard H. Kramer e Dirk Trauner.
Descobrimos um interruptor genético que está sempre ativo nos dois neurônios de comando, e em nenhum outro – e um outro interruptor que fica ativo em neurônios do padrão gerador, mas não nos neurônios de comando. Foi como transmitir uma mensagem pelo rádio para uma cidade com 150 mil residências, sendo que um número reduzido delas possuía o sintonizador necessário para decodificar o sinal, que ficou inaudível para as restantes.
www2.uol.com.br
Nenhum comentário:
Postar um comentário